$\mu = 0.23 \text{ mm}^{-1}$ 

 $0.44 \times 0.42 \times 0.35 \text{ mm}$ 

7888 measured reflections

2849 independent reflections

1679 reflections with  $I > 2\sigma(I)$ 

T = 298 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Benzothiazol-2-amine-3-methoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid (1/1)

#### Jian Li

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ljwfu@163.com

Received 6 December 2010; accepted 14 December 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.123; data-to-parameter ratio = 13.1.

In the title 1:1 adduct, C7H6N2S·C9H10O5, all non-H atoms of the benzothiazol-2-amine molecule are essentially coplanar, with a maximum deviation of 0.0286 (9) Å for the S atom. In the crystal, intermolecular N-H···O and O-H···N hydrogen bonds connect two molecules of each type into centrosymmetric four-component clusters.

#### **Related literature**

For applications of 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid and its derivatives, see: Deng & Hu (2007). For a related structure, see: Wang et al. (2008).



#### **Experimental**

Crystal data

| $C_7H_6N_2S\cdot C_9H_{10}O_5$ | a = 10.2737 (10)  Å |
|--------------------------------|---------------------|
| $M_r = 348.37$                 | b = 10.4325 (11) Å  |
| Monoclinic, $P2_1/n$           | c = 15.0308 (17)  Å |

 $\beta = 93.646 \ (1)^{\circ}$ V = 1607.7 (3) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation

#### Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997)  $T_{\min} = 0.905, T_{\max} = 0.924$ 

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$  $wR(F^2) = 0.123$ S = 1.032849 reflections

 $R_{\rm int} = 0.044$ 

218 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ 

| Table 1                |         |  |
|------------------------|---------|--|
| Hydrogen-bond geometry | (Å, °). |  |

| $D - H \cdots A$                                                          | D-H                      | $H \cdot \cdot \cdot A$              | $D \cdots A$                             | $D - H \cdots A$                       |
|---------------------------------------------------------------------------|--------------------------|--------------------------------------|------------------------------------------|----------------------------------------|
| $N2-H2A\cdots O3^{i}$                                                     | 0.86                     | 2.08                                 | 2.849 (3)                                | 148                                    |
| $N2-H2B\cdots O3^{ii}$                                                    | 0.86                     | 2.46                                 | 2.987 (4)                                | 120                                    |
| $N2 - H2B \cdot \cdot \cdot O5^{ii}$                                      | 0.86                     | 2.14                                 | 2.949 (4)                                | 157                                    |
| $O4-H4\cdots N1^{iii}$                                                    | 0.82                     | 1.89                                 | 2.676 (3)                                | 162                                    |
| Symmetry codes:<br>$-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$ | (i) $-x + \frac{1}{2}$ , | $y + \frac{1}{2}, -z + \frac{3}{2};$ | (ii) $x + \frac{1}{2}, -y + \frac{1}{2}$ | $-\frac{1}{2}, z + \frac{1}{2};$ (iii) |

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5186).

#### References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, L. P. & Hu, Y. Z. (2007). J. Heterocycl. Chem. 44, 597-601. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Wang, Y.-Y., Hu, R.-D. & Wang, Y.-J. (2008). Acta Cryst. E64, 01442.

supplementary materials

Acta Cryst. (2011). E67, o199 [doi:10.1107/S1600536810052542]

## Benzothiazol-2-amine-3-methoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-ene-2-carboxylic acid (1/1)

## J. Li

### Comment

7-Oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride has been widely employed in clinical practice (Deng & Hu, 2007). In this paper, the crystal structure of the title compound is reported. The asymmetric unit consistes of a 3-(meth-oxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule and a benzothiazol-2-amine molecule (Fig. 1). Bond lengths and angles are comparable to those observed for the 1:1 cocrystal of rac-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid and benzothiazol-2-amine (Wang, *et al.*, 2008). In the 3-(methoxycarbonyl)-7-oxa-bicyclo[2.2.1]hept-5-ene-2-carboxylic acid molecule the dihedral angle between the mean plane formed by atoms C3/C4/C5/C8 and the plane fromed by C5/C6/C7/C8 is 69.3 (2) °. All non-hydrogen atoms of the benzothiazol-2-amine molecule are essentially co-planar with a maximum deviation of 0.0286 (9)Å for atom S1. In the crystal structure, intermolecular N—H···O and O—H···N hydrogen bonds connect two molecules of each type into centrosymmetric four component clusters (Fig. 2, Table 1).

## Experimental

A mixture of *exo*-7-oxa-bicyclo[2,2,1]hept-5-ene-2,3-dicarboxylic anhydride (0.332 g, 2 mmol) and benzothiazol-2-amine (0.3 g, 2 mmol) in methanol (5 ml) was stirred for 5 h at room temperature. The reacted solution was left for crystallization at room temperature. The single-crystal suitable for X-ray determination was obtained by evaporation after 5 d.

#### Refinement

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.93–0.96 Å, N-H = 0.86Å, O-H = 0.82Å and  $U_{iso}(H) = 1.2U_{eq}(C, N)$  or  $1.5U_{eq}(O, methyl C)$ .

#### **Figures**



Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.



Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.

## Benzothiazol-2-amine-3-methoxycarbonyl-7-oxabicyclo[2.2.1]hept-5-ene-2- carboxylic acid (1/1)

| Crystal a |
|-----------|
|-----------|

| $C_7H_6N_2S\cdot C_9H_{10}O_5$ | F(000) = 728                                          |
|--------------------------------|-------------------------------------------------------|
| $M_r = 348.37$                 | $D_{\rm x} = 1.439 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/n$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn            | Cell parameters from 1736 reflections                 |
| a = 10.2737 (10)  Å            | $\theta = 2.3 - 22.2^{\circ}$                         |
| b = 10.4325 (11)  Å            | $\mu = 0.23 \text{ mm}^{-1}$                          |
| c = 15.0308 (17)  Å            | T = 298  K                                            |
| $\beta = 93.646 \ (1)^{\circ}$ | Block, light yellow                                   |
| $V = 1607.7 (3) \text{ Å}^3$   | $0.44 \times 0.42 \times 0.35 \text{ mm}$             |
| Z = 4                          |                                                       |

## Data collection

| Bruker SMART CCD<br>diffractometer                                   | 2849 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                             | 1679 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.044$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 1997) | $h = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.905, T_{\max} = 0.924$                                 | $k = -12 \rightarrow 11$                                                  |
| 7888 measured reflections                                            | $l = -17 \rightarrow 15$                                                  |

## Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.046$ | Hydrogen site location: inferred from neighbouring sites                                            |
| $wR(F^2) = 0.123$               | H-atom parameters constrained                                                                       |
| <i>S</i> = 1.03                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0403P)^{2} + 0.9023P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 2849 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                                     |

| 218 parameters | $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$      |
|----------------|------------------------------------------------------------|
| 0 restraints   | $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | У           | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|--------------|---------------------------|
| N1  | 0.4153 (2)  | 0.6895 (2)  | 0.77925 (16) | 0.0453 (7)                |
| N2  | 0.5207 (3)  | 0.5250 (3)  | 0.85991 (17) | 0.0582 (8)                |
| H2A | 0.5263      | 0.5700      | 0.9079       | 0.070*                    |
| H2B | 0.5514      | 0.4483      | 0.8601       | 0.070*                    |
| 01  | 0.3673 (2)  | 0.2580 (2)  | 0.52228 (13) | 0.0535 (6)                |
| 02  | 0.3477 (3)  | 0.1157 (3)  | 0.41181 (16) | 0.0818 (9)                |
| O3  | 0.0688 (2)  | 0.1771 (2)  | 0.49890 (13) | 0.0617 (7)                |
| O4  | 0.0927 (2)  | 0.3513 (2)  | 0.58303 (13) | 0.0582 (6)                |
| H4  | 0.0728      | 0.3016      | 0.6222       | 0.087*                    |
| 05  | 0.0846 (2)  | 0.2395 (2)  | 0.30892 (13) | 0.0513 (6)                |
| S1  | 0.45412 (9) | 0.48354 (8) | 0.68714 (6)  | 0.0561 (3)                |
| C1  | 0.3281 (3)  | 0.2196 (3)  | 0.4405 (2)   | 0.0465 (8)                |
| C2  | 0.0935 (3)  | 0.2904 (3)  | 0.5075 (2)   | 0.0420 (8)                |
| C3  | 0.2594 (3)  | 0.3276 (3)  | 0.39140 (18) | 0.0389 (7)                |
| H3  | 0.3188      | 0.4010      | 0.3896       | 0.047*                    |
| C4  | 0.1297 (3)  | 0.3720 (3)  | 0.43033 (18) | 0.0393 (7)                |
| H4A | 0.1347      | 0.4625      | 0.4476       | 0.047*                    |
| C5  | 0.0336 (3)  | 0.3534 (3)  | 0.3470 (2)   | 0.0471 (8)                |
| Н5  | -0.0588     | 0.3494      | 0.3594       | 0.057*                    |
| C6  | 0.0675 (3)  | 0.4538 (3)  | 0.2804 (2)   | 0.0525 (9)                |
| H6  | 0.0209      | 0.5280      | 0.2656       | 0.063*                    |
| C7  | 0.1755 (3)  | 0.4154 (3)  | 0.2479 (2)   | 0.0510 (9)                |
| H7  | 0.2214      | 0.4562      | 0.2046       | 0.061*                    |
| C8  | 0.2104 (3)  | 0.2917 (3)  | 0.29452 (19) | 0.0477 (8)                |
| H8  | 0.2683      | 0.2352      | 0.2631       | 0.057*                    |
| С9  | 0.4275 (4)  | 0.1628 (3)  | 0.5812 (2)   | 0.0713 (11)               |
| H9A | 0.3621      | 0.1046      | 0.5998       | 0.107*                    |
| H9B | 0.4689      | 0.2043      | 0.6325       | 0.107*                    |
| H9C | 0.4915      | 0.1162      | 0.5504       | 0.107*                    |
| C10 | 0.4647 (3)  | 0.5736 (3)  | 0.7857 (2)   | 0.0460 (8)                |
|     |             |             |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| C11 | 0.3640 (3) | 0.7130 (3) | 0.6929 (2) | 0.0446 (8)  |
|-----|------------|------------|------------|-------------|
| C12 | 0.3787 (3) | 0.6131 (3) | 0.6332 (2) | 0.0470 (8)  |
| C13 | 0.3350 (3) | 0.6251 (4) | 0.5446 (2) | 0.0638 (10) |
| H13 | 0.3454     | 0.5582     | 0.5048     | 0.077*      |
| C14 | 0.2767 (4) | 0.7362 (4) | 0.5167 (2) | 0.0722 (12) |
| H14 | 0.2479     | 0.7453     | 0.4571     | 0.087*      |
| C15 | 0.2594 (3) | 0.8357 (4) | 0.5750 (2) | 0.0652 (10) |
| H15 | 0.2179     | 0.9102     | 0.5544     | 0.078*      |
| C16 | 0.3029 (3) | 0.8262 (3) | 0.6639 (2) | 0.0547 (9)  |
| H16 | 0.2917     | 0.8936     | 0.7032     | 0.066*      |
|     |            |            |            |             |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | <i>U</i> <sup>13</sup> | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|------------------------|--------------|
| N1  | 0.0546 (16) | 0.0395 (17)     | 0.0419 (16)     | 0.0030 (13)  | 0.0026 (13)            | -0.0020 (12) |
| N2  | 0.085 (2)   | 0.0442 (18)     | 0.0454 (17)     | 0.0167 (16)  | 0.0036 (15)            | -0.0005 (14) |
| 01  | 0.0663 (15) | 0.0479 (15)     | 0.0437 (13)     | 0.0040 (11)  | -0.0162 (11)           | -0.0004 (11) |
| O2  | 0.122 (2)   | 0.0556 (17)     | 0.0649 (17)     | 0.0284 (16)  | -0.0192 (15)           | -0.0140 (14) |
| O3  | 0.0928 (18) | 0.0521 (16)     | 0.0407 (13)     | -0.0243 (14) | 0.0078 (12)            | -0.0001 (11) |
| O4  | 0.0928 (18) | 0.0474 (14)     | 0.0354 (13)     | -0.0022 (13) | 0.0114 (12)            | -0.0016 (11) |
| O5  | 0.0674 (15) | 0.0475 (14)     | 0.0376 (12)     | -0.0173 (12) | -0.0078 (11)           | 0.0021 (11)  |
| S1  | 0.0723 (6)  | 0.0454 (6)      | 0.0512 (5)      | -0.0042 (5)  | 0.0095 (4)             | -0.0105 (4)  |
| C1  | 0.049 (2)   | 0.049 (2)       | 0.0406 (19)     | -0.0010 (17) | -0.0008 (15)           | 0.0009 (17)  |
| C2  | 0.0448 (18) | 0.045 (2)       | 0.0358 (19)     | -0.0019 (16) | 0.0019 (14)            | 0.0015 (16)  |
| C3  | 0.0438 (18) | 0.0360 (18)     | 0.0364 (17)     | -0.0060 (14) | -0.0007 (14)           | -0.0001 (14) |
| C4  | 0.0461 (18) | 0.0365 (18)     | 0.0349 (16)     | -0.0033 (15) | -0.0011 (14)           | -0.0007 (14) |
| C5  | 0.0470 (19) | 0.051 (2)       | 0.0426 (19)     | -0.0059 (16) | -0.0058 (15)           | 0.0068 (17)  |
| C6  | 0.060 (2)   | 0.051 (2)       | 0.0444 (19)     | -0.0001 (18) | -0.0153 (17)           | 0.0096 (17)  |
| C7  | 0.068 (2)   | 0.050 (2)       | 0.0335 (18)     | -0.0141 (19) | -0.0058 (17)           | 0.0080 (16)  |
| C8  | 0.061 (2)   | 0.049 (2)       | 0.0333 (17)     | -0.0028 (17) | 0.0037 (15)            | 0.0004 (15)  |
| C9  | 0.085 (3)   | 0.065 (3)       | 0.060 (2)       | 0.011 (2)    | -0.021 (2)             | 0.015 (2)    |
| C10 | 0.0497 (19) | 0.044 (2)       | 0.0450 (19)     | -0.0030 (16) | 0.0108 (15)            | -0.0010 (16) |
| C11 | 0.0409 (18) | 0.047 (2)       | 0.0455 (19)     | -0.0080 (16) | 0.0020 (15)            | 0.0001 (16)  |
| C12 | 0.0486 (19) | 0.052 (2)       | 0.0399 (19)     | -0.0135 (16) | 0.0028 (15)            | -0.0056 (16) |
| C13 | 0.069 (2)   | 0.071 (3)       | 0.051 (2)       | -0.018 (2)   | -0.0037 (19)           | -0.014 (2)   |
| C14 | 0.071 (3)   | 0.093 (3)       | 0.050 (2)       | -0.018 (2)   | -0.0163 (19)           | 0.005 (2)    |
| C15 | 0.056 (2)   | 0.073 (3)       | 0.065 (3)       | -0.007 (2)   | -0.0136 (19)           | 0.013 (2)    |
| C16 | 0.054 (2)   | 0.053 (2)       | 0.056 (2)       | -0.0020 (18) | -0.0012 (17)           | 0.0009 (18)  |
|     |             |                 |                 |              |                        |              |

# Geometric parameters (Å, °)

| N1—C10 | 1.312 (4) | C4—H4A | 0.9800    |
|--------|-----------|--------|-----------|
| N1—C11 | 1.391 (4) | C5—C6  | 1.504 (4) |
| N2—C10 | 1.323 (4) | С5—Н5  | 0.9800    |
| N2—H2A | 0.8600    | C6—C7  | 1.304 (4) |
| N2—H2B | 0.8600    | С6—Н6  | 0.9300    |
| O1—C1  | 1.330 (3) | С7—С8  | 1.501 (4) |
| O1—C9  | 1.443 (3) | С7—Н7  | 0.9300    |
| O2—C1  | 1.188 (4) | C8—H8  | 0.9800    |

| O3—C2      | 1.214 (4)  | С9—Н9А      | 0.9600    |
|------------|------------|-------------|-----------|
| O4—C2      | 1.302 (3)  | С9—Н9В      | 0.9600    |
| O4—H4      | 0.8200     | С9—Н9С      | 0.9600    |
| O5—C8      | 1.432 (4)  | C11—C12     | 1.390 (4) |
| O5—C5      | 1.432 (4)  | C11—C16     | 1.395 (4) |
| S1—C12     | 1.733 (3)  | C12—C13     | 1.384 (4) |
| S1—C10     | 1.752 (3)  | C13—C14     | 1.359 (5) |
| C1—C3      | 1.499 (4)  | C13—H13     | 0.9300    |
| C2—C4      | 1.504 (4)  | C14—C15     | 1.377 (5) |
| C3—C8      | 1.556 (4)  | C14—H14     | 0.9300    |
| C3—C4      | 1.560 (4)  | C15—C16     | 1.385 (4) |
| С3—Н3      | 0.9800     | C15—H15     | 0.9300    |
| C4—C5      | 1.557 (4)  | C16—H16     | 0.9300    |
| C10—N1—C11 | 110.7 (3)  | С6—С7—Н7    | 127.1     |
| C10—N2—H2A | 120.0      | С8—С7—Н7    | 127.1     |
| C10—N2—H2B | 120.0      | O5—C8—C7    | 101.9 (3) |
| H2A—N2—H2B | 120.0      | O5—C8—C3    | 101.0 (2) |
| C1—O1—C9   | 116.9 (3)  | C7—C8—C3    | 106.5 (3) |
| С2—О4—Н4   | 109.5      | О5—С8—Н8    | 115.2     |
| C8—O5—C5   | 95.9 (2)   | С7—С8—Н8    | 115.2     |
| C12—S1—C10 | 88.80 (16) | С3—С8—Н8    | 115.2     |
| O2—C1—O1   | 124.2 (3)  | О1—С9—Н9А   | 109.5     |
| O2—C1—C3   | 126.3 (3)  | O1—C9—H9B   | 109.5     |
| O1—C1—C3   | 109.5 (3)  | Н9А—С9—Н9В  | 109.5     |
| O3—C2—O4   | 123.7 (3)  | O1—C9—H9C   | 109.5     |
| O3—C2—C4   | 121.9 (3)  | Н9А—С9—Н9С  | 109.5     |
| O4—C2—C4   | 114.3 (3)  | Н9В—С9—Н9С  | 109.5     |
| C1—C3—C8   | 113.2 (3)  | N1—C10—N2   | 124.2 (3) |
| C1—C3—C4   | 115.1 (2)  | N1-C10-S1   | 115.4 (2) |
| C8—C3—C4   | 100.9 (2)  | N2-C10-S1   | 120.5 (3) |
| С1—С3—Н3   | 109.1      | C12—C11—N1  | 114.8 (3) |
| С8—С3—Н3   | 109.1      | C12-C11-C16 | 119.9 (3) |
| С4—С3—Н3   | 109.1      | N1—C11—C16  | 125.3 (3) |
| C2—C4—C5   | 112.0 (2)  | C13—C12—C11 | 120.8 (3) |
| C2—C4—C3   | 112.4 (2)  | C13—C12—S1  | 128.9 (3) |
| C5—C4—C3   | 100.0 (2)  | C11—C12—S1  | 110.3 (2) |
| C2—C4—H4A  | 110.7      | C14—C13—C12 | 118.9 (4) |
| C5—C4—H4A  | 110.7      | C14—C13—H13 | 120.5     |
| C3—C4—H4A  | 110.7      | C12—C13—H13 | 120.5     |
| O5—C5—C6   | 101.9 (3)  | C13—C14—C15 | 121.2 (3) |
| O5—C5—C4   | 101.3 (2)  | C13—C14—H14 | 119.4     |
| C6—C5—C4   | 106.6 (2)  | C15-C14-H14 | 119.4     |
| O5—C5—H5   | 115.1      | C14—C15—C16 | 120.9 (4) |
| C6—C5—H5   | 115.1      | C14—C15—H15 | 119.5     |
| С4—С5—Н5   | 115.1      | C16—C15—H15 | 119.5     |
| C7—C6—C5   | 105.9 (3)  | C15—C16—C11 | 118.2 (3) |
| С7—С6—Н6   | 127.0      | C15—C16—H16 | 120.9     |
| С5—С6—Н6   | 127.0      | C11—C16—H16 | 120.9     |
| C6—C7—C8   | 105.8 (3)  |             |           |

# supplementary materials

| C9—O1—C1—O2 | -5.4 (5)   | C6—C7—C8—O5     | 32.5 (3)   |
|-------------|------------|-----------------|------------|
| C9—O1—C1—C3 | 175.8 (3)  | C6—C7—C8—C3     | -73.0 (3)  |
| O2—C1—C3—C8 | 1.0 (5)    | C1—C3—C8—O5     | 87.8 (3)   |
| O1—C1—C3—C8 | 179.7 (2)  | C4—C3—C8—O5     | -35.8 (3)  |
| O2—C1—C3—C4 | 116.3 (4)  | C1—C3—C8—C7     | -166.1 (3) |
| O1—C1—C3—C4 | -64.9 (3)  | C4—C3—C8—C7     | 70.3 (3)   |
| O3—C2—C4—C5 | 48.4 (4)   | C11—N1—C10—N2   | 179.8 (3)  |
| O4—C2—C4—C5 | -132.4 (3) | C11—N1—C10—S1   | 0.4 (3)    |
| O3—C2—C4—C3 | -63.3 (4)  | C12—S1—C10—N1   | 0.6 (2)    |
| O4—C2—C4—C3 | 115.9 (3)  | C12—S1—C10—N2   | -178.8 (3) |
| C1—C3—C4—C2 | -3.9 (3)   | C10-N1-C11-C12  | -1.6 (4)   |
| C8—C3—C4—C2 | 118.4 (3)  | C10-N1-C11-C16  | 179.2 (3)  |
| C1—C3—C4—C5 | -122.8 (3) | N1-C11-C12-C13  | -178.4 (3) |
| C8—C3—C4—C5 | -0.6 (3)   | C16-C11-C12-C13 | 0.9 (5)    |
| C8—O5—C5—C6 | 49.2 (2)   | N1-C11-C12-S1   | 2.1 (3)    |
| C8—O5—C5—C4 | -60.7 (2)  | C16-C11-C12-S1  | -178.7 (2) |
| C2—C4—C5—O5 | -82.4 (3)  | C10—S1—C12—C13  | 179.0 (3)  |
| C3—C4—C5—O5 | 36.8 (3)   | C10—S1—C12—C11  | -1.5 (2)   |
| C2—C4—C5—C6 | 171.4 (3)  | C11—C12—C13—C14 | -0.3 (5)   |
| C3—C4—C5—C6 | -69.4 (3)  | S1—C12—C13—C14  | 179.2 (3)  |
| O5—C5—C6—C7 | -31.4 (3)  | C12-C13-C14-C15 | -0.7 (6)   |
| C4—C5—C6—C7 | 74.3 (3)   | C13—C14—C15—C16 | 1.0 (6)    |
| C5—C6—C7—C8 | -0.6 (3)   | C14-C15-C16-C11 | -0.4 (5)   |
| C5—O5—C8—C7 | -49.7 (3)  | C12-C11-C16-C15 | -0.5 (5)   |
| C5—O5—C8—C3 | 60.0 (2)   | N1-C11-C16-C15  | 178.6 (3)  |

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | $D \!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
|---------------------------|-------------|-------|--------------|-----------------------------------------------------------------------------|
| N2—H2A···O3 <sup>i</sup>  | 0.86        | 2.08  | 2.849 (3)    | 148                                                                         |
| N2—H2B···O3 <sup>ii</sup> | 0.86        | 2.46  | 2.987 (4)    | 120                                                                         |
| N2—H2B···O5 <sup>ii</sup> | 0.86        | 2.14  | 2.949 (4)    | 157                                                                         |
| O4—H4…N1 <sup>iii</sup>   | 0.82        | 1.89  | 2.676 (3)    | 162                                                                         |

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1/2, y-1/2, -z+3/2.



Fig. 1

Fig. 2

